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ABSTRACT

CfunBASE is a customizable C# cosmological functions library in the .NET frame-

work. Its primary use is in CasJobs/SkyServer, where the functions are ported into

a MS-SQL Server database hosting the SDSS science archive, and can be executed

through simple T-SQL commands. This gives cloud-computing users the possibility of

calculating cosmological distances, volumes and times as a function of redshift, as well

as their respective inverse functions. Also included are basic data exploratory analysis

tools, such as binning, N-dimensional weighted histograms and quantile and cumulative

distribution aggregate functions. Advanced astronomical examples are presented and

discussed, such as the T-SQL implementation and fast computation of luminosity func-

tions, color-magnitude diagrams and the friends-of-friends galaxy cluster identification

algorithm.

Subject headings: Tutorial — Data Analysis and Techniques — Astronomical Tech-

niques

1. Introduction

Science has evolved today to include the essential use of computer science and applied math and

statistics. After starting with plain observation, it was complemented with a theoretical background

and, lately, computer simulations have been used to reproduce complex phenomena out of the reach

of theory.

Nowadays, we experience the emergence of a fourth paradigm: data-intensive or e-science (see

articles in Hey et al. (2009)), which engulfs the previous three by providing ways of

1. Collecting a huge amount of observational data provided by technological advances (”data

deluge”), either from networks of cheap massified sensors, high output state-of-the-art instru-

ments, computer simulations, or other mechanisms with output reaching now Petabytes/year

(Szalay et al. 2001).
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2. Preprocessing, archiving and preserving the data in servers, with emphasis in many low energy

consumption hard drives with fast I/O and parallel CPUs or GPUs, supported by an efficient

database management system (DBMS).

3. Visualizing and analyzing the complex high-dimensional data space with statistical datamin-

ing tools right where the data is stored physically, having the small sized aggregated results

made available to the client for further scientific use.

In fact, the data deluge makes infeasible to either move, download or analyze all the data in

personal computers or Beowulf type clusters (Bell et al. 2009). This forces to ”bring the compu-

tation to the data”, having it stored in clusters of server optimized for a balance between parallel

computing power and data access, transfer and analysis for many on-demand users, rather than

only performance-centered computational power for a small or centralized amount of users (Szalay

et al. 2009a,b). The implementation of data warehouses brings the possibility of cloud computing

(Armbrust et al. 2009), by means of which any client can connect to its own small database or

environment in servers (i.e. ”the cloud”), where services are offered, data can be stored, queried or

shared and provided software can be run.

Current examples, in and outside science, can be found in the study of consumer habits, track

of global commercial transactions, Geospatial Information Systems and web mapping (e.g Google

Earth), genomics (e.g. Genome Project, Roehm & Blakeley (2009)), online social networks (e.g.

Facebook), web search engines (e.g. Google, Yahoo), experimental particle physics (e.g. Large

Hadron Collider), data/mass surveillance (Kolda et al. 2005; Popp & Poindexter 2006), etc. In

astronomy, the spreading of high resolution CCDs and high quality optics telescopes has fostered

an avalanche of data. A pioneering example is the Sloan Digital Sky Survey (SDSS) (York et al.

2000), that with a 120Mpix CCD camera and 2.5m telescope has scanned 25% of the sky, generating

∼30TB of data. A successful example of cloud computing is SkyServer (Szalay et al. 2001; Singh

et al. 2006), which provides public access to SDSS data archive by means of the web based service

CasJobs 1 running on MS-SQL Server. Data storage and analysis in next generation surveys will be

much more demanding, as Pan-STARRS 2, LSST (Ivezic et al. 2008; Abell et al. 2009) and others

will be providing time series data at a rate of 30TB/night of raw data.

In this paper we present CfunBASE 3, a .NET framework library written in C# that contains

functions relevant in cosmology and extragalactic astronomy, made ready to be uploaded into a

MS-SQL 2005/2008 server database and executed in situ using T-SQL queries. Several previous

cosmology libraries have been included in web services e.g. Wright (2006) and Kitching et al.

(2009), but until now there is a lack of a library written in a fast low level programming language

1http://cas.sdss.org/dr7/en/

2http://pan-starrs.ifa.hawaii.edu/public/

3Downloadable from http://www.skyserver.org/cfunbase
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with database integration in order to handle the data deluge.

CfunBASE’s primary intended use is in CasJobs 4, where it provides measurements of cosmo-

logical distances, volumes and times as a function of redshift, with which astronomers or the general

public can do sample selection, identification of galaxy clusters and filtering of extragalactic objects

inside ”the cloud”, without having to download superfluous data into their computers. Current and

future sky surveys, such as LAMOST (Sun et al. 2006; Wang et al. 2009), Pan-STARRS and LSST

will provide redshift measurements obtained either from spectroscopy (∼ 106-107) or multiband

photometry (∼ 109-1010), on which CfunBASE might be of great utility. The library also includes

basic data exploratory analysis and statistical tools, such as quantile aggregate functions, basic

binning and creation of N-dimensional weighted histograms, helpful for visualizing the high dimen-

sional data space. Section 2 of this paper reviews the theory of the universe dynamics under general

relativity and lists basic cosmological functions, Section 3 discusses details on the implementation

of the library and Section 4 shows CfunBASE-related advanced examples of astronomical interest,

which are shown written as T-SQL scripts in Appendix B.

2. Theoretical Background

Quantities of basic interest in cosmology are measurements of the distances, volumes and times

involved in dynamics of an expanding universe. The theoretical framework is widely known, but is

included here for completeness. Some papers and books on these matters include Hogg (2000), Hogg

et al. (2002), Liske (2000), Peacock (1999), Peebles (1993), Martinez & Saar (2002), Bonometto et

al. (2002), Dodelson (2003), Weinberg (2008) and others.

Under General relativity, Einstein’s field equation (Peacock 1999; Bonometto et al. 2002; Do-

delson 2003) relates information about the content of the universe (energy-momentum tensor Tµν)

with its geometry (Einstein tensor Gµν).

Gµν + Λgµν = −8πG

c4
Tµν . (1)

where Λ is Einstein’s famous cosmological constant. Here, gµν is the Robertson-Walker metric

tensor, obtained from considerations of an isotropic and homogeneous universe (Weinberg 2008),

under which the space-time line element (dependent on the curvature k) is given by (Bonometto

et al. 2002; Martinez & Saar 2002)

ds2 = c2dt2 −R2(t)[dr2 + S2
k(r)(dθ

2 + sin2(θ)dϕ2)], (2)

Sk(r) =


sinh(r) if k = −1, open universe

r if k = 0, flat universe

sin(r) if k = 1, closed universe.

(3)

4A preliminary version of CfunBASE is included as part of the DR7 database, while the full version will be

provided in the next data release.
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The coordinates r, θ and ϕ behave as dimensionless angles, being called ”comoving” as they are

defined on a 3-dimensional hypersurface that expands according to R(t), which is the scale factor

or curvature radius of the universe. The k = 1, k = −1 and k = 0 universes have the geometry of

a 3-sphere, 3-hyperboloid and 3-plane respectively. Manipulations on Eqs. (1) and (2) lead to the

Friedman equations (Bonometto et al. 2002; Martinez & Saar 2002):

H2 ≡ Ṙ2

R2
=

ȧ2

a2
=

8πG

3
ρ+

Λc2

3
− kc2

R2
, (4)

ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
, (5)

ρ̇ = −3
ȧ

a
(ρ+

p

c2
). (6)

Equation (4) defines the Hubble parameter H(t), which determines the expansion rate of the

universe, measured today to be H0 ≡ H(t = 0) ≡ h0 × 100 Km/s Mpc−1, where h0 = 0.705

according to Komatsu et al. (2009). Here,

a(t) ≡ R(t)

R0
=

1

1 + z
(7)

is the normalized scale factor (a0 = 1). The redshift z ∈ [0,∞] (z(t = 0) = 0) is used by astronomers

as a proxy for time t, since it can be obtained directly by measuring the Doppler shift (with respect

to a rest frame) of the observed wavelength λ in known spectral features of the spectrum of a galaxy

that moves away from us, together with the universe expansion (or ”Hubble flow”):

z ≡ λobs

λrest
− 1. (8)

In the Friedman equations, Λ, the pressure p and the density ρ give information about the content

of the universe. The density is defined as ρ = ρM +ρR (matter plus radiation), whereas the fiducial

dark energy density can be written as ρΛ = Λc2/(8πG). Using Eq. (4), we obtain that at any time

there exists a total critical density ρTc = 3H2(t)/(8πG) for which the universe is flat (k = 0). It

amounts nowadays to 5.6× 10−27kg/m3. We can define the normalized densities

Ωi = ρi/ρTc (i ∈ {M,R,Λ}), (9)

ΩT =
∑

Ωi, (10)

Ωk = −kc2/(HR)2, (11)

with which Eq. (4) results in

ΩM +ΩR +ΩΛ +Ωk = ΩT +Ωk = 1. (12)

We can solve for H(t) by using Eq. (6) and a suitable equation of state (EOS) pi = wiρic
2 for each

one of the universe’s components. That leads us to

ρi(a) = ρi,0a
−3(1+w̄i(a)) = Ωi,0

3H2
0

8πG
a−3(1+w̄i(a)), (13)
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w̄i(a) =
1

ln a

∫ ln a

0
d ln(a′)wi(a

′). (14)

Note that wM = 0 and wR = 1/3. For dark energy, the most basic non-evolving EOS is defined

by wΛ = wΛ,0 ≡ w0 = −1. Summing up, the dynamics is determined by

H(z) = H0E(z), (15)

E2(z) = ΩM,0(1 + z)3 +ΩR,0(1 + z)2 +

ΩΛ,0(1 + z)−3(1+w̄Λ) +Ωk,0(1 + z)2. (16)

Knowledge of today’s values of the cosmological parameters ΩM , ΩR, ΩΛ, Ωk, ω0 and h0 allows

to determine the dynamics of the expansion and the cosmological functions concerning distances

and times. The estimated values measured by using WMAP (5yr) combined with measurements

from Type Ia supernovae and Baryon Acoustic Oscillations (Komatsu et al. 2009) are:

(ΩM,0,ΩR,0,ΩΛ,0, h0, w0) =

(0.2739, 10−4, 0.726, 0.705,−1), (17)

which have been rounded to support the agreed observed fact that ΩT,0 = 1 and Ωk,0 = 0 (flat

universe). Here we have considered the measured effective number of neutrinos equal to Neff = 4.4

and ΩR = Ωγ(1 + 0.2271Neff), where Ωγ = 4.968× 10−5 according to Komatsu et al. (2009).

Distance and time scales are defined by

DH(z) = cH−1(z), (18)

TH(z) = H−1(z), (19)

called Hubble distance and time respectively, with current values of DH,0 = 4252.38 Mpc and

TH,0 = 13.87 Gyr. Straight from Eqs. (11) and (12), we can obtain the curvature radius of the

universe, given by

R(z) = DH

√
k

ΩT − 1
=

DH,0

1 + z

√
k

ΩT,0 − 1
, (20)

which is non-defined for ΩT,0 = 1 (flat universe). As a photon always travels along null geodesics

in space-time (ds2 = 0), we have from Eq. (2) that dr = cdt/R(t) when the light travels along

the radial direction (i.e. line of sight). Also, from Eqs. 4 and 7 we obtain dt = dz[(1 + z)H]−1.

Now, by including Eq. (15) we can obtain expressions for the intervals of time ∆T and comoving

distance ∆Dc (line of sight) comprehended in the redshift interval z ∈ [z1, z2]:

∆DC(z1, z2) = R0∆r(z1, z2) = DH,0

∫ z2

z1

dz

E(z)
, (21)
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∆T (z1, z2) = TH,0

∫ z2

z1

dz

(1 + z)E(z)
, (22)

DC(z) ≡ ∆DC(0, z), (23)

TLB(z) ≡ ∆T (0, z), (24)

TAU (z) ≡ ∆T (z,∞). (25)

Here we have defined the line of sight comoving distance DC(z), look back time TLB(z) and

age of the universe TAU (z). For the current values of Ωi, the line of sight comoving distance has

a finite maximum at infinite redshift, as photons meeting a particle at z = 0 have a limited time

to travel since the beginning of the universe (TAU (z = 0) = 13.71 Gyr). In fact, Dhor(z = 0) ≡
Dc(z = ∞) = 1.428×104Mpc is the current value of the so called particle horizon, outside of which

the events are not connected causally with the particle at redshift z = 0.

On the other hand, from Eq. 2, the transverse physical size ∆L of an object is connected

to its angular diameter ∆θ by means of ∆L = R(z)Sk(∆r(0, z))∆θ. Hence, the angular diameter

distance DA(z) is given by

DA(z) =
∆L

∆θ
=

DH,0

(1 + z)|Ωk,0|
1
2

Sk

(
DC |Ωk,0|

1
2

DH,0

)
. (26)

From Eq. 26 another distance scale, the transverse comoving distance, can be defined:

DM (z) = (1 + z)DA(z). (27)

In a more general way, we can calculate the comoving distance between events at different redshifts

and angular separation θ in the sky. Straight from Eq. 2, we have that the line element dL2 =

R2
0(dr

2+S2
k(r)dθ

2) is defined on the surface of a 3-sphere, 3-hyperboloid or 3-plane. Therefore, the

comoving separation distance between points 1 and 2 is

∆L = R0r12, (28)

where by using the law of cosines in spherical (k = 1) and hyperbolic (k=-1) geometry we have

respectively (Peacock 1999; Liske 2000)

cos r12 = cos r1 cos r2 + sin r1 sin r2 cos θ, (29)

cosh r12 = cosh r1 cosh r2 − sinh r1 sinh r2 cos θ. (30)

The angles r1 = ∆r(0, z1) and r2 = ∆r(0, z2) are related to the line of sight comoving distance by

means of Eq. 21. In the case of flat geometry (k = 0), we have

∆L2 = D2
C(z1) +D2

C(z2)− 2DC(z1)DC(z2) cos θ. (31)
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The differential of volume is dV = 4πR2(t)S2
k(r)dr, which under integration leads to (Martinez

& Saar 2002)

VC(z) = 2πR3
0[r − sin(r) cos(r)] (k = 1), (32)

VC(z) = 2πR3
0[sinh(r) cosh(r)− r] (k = −1), (33)

VC(z) =
4
3πD

3
C(z) (k = 0), (34)

where r = ∆r(0, z).

With respect to magnitudes, the distance to the light source has to be redefined in order to

adjust for changes due to the expansion universe. In fact, the total luminosity per frequency at a

redshift z is measured as a total flux density per frequency S = L/(4πD2
L(z)) received at z = 0,

where the luminosity distance DL(z) takes into account the changes in the frequency of the light,

the arrival rate and energy and the change in the spectral bandwidth (Peacock 1999). This leads

to

DL(z) = DM (1 + z) = DA(1 + z)2. (35)

Hence, we can define the distance modulus DM (Hogg 2000) as

DM ≡ m−M = 5 log[DL(z)/1Mpc] + 25, (36)

where M is the absolute magnitude, m is the apparent magnitude (extinction and k-corrected)

(Hogg et al. 2002). Usually, DM is used a proxy for DL.

3. Database Integration and Functions Implementation

The library is written in C# under the .NET framework. In this environment, any .NET

programming language is compiled into a lower common intermediate language (CLI) and then ex-

ecuted by the .NET run time. Starting 2005, MS-SQL Server incorporates this Common Language

Runtime (CLR), allowing the user to create his own code written in any .NET language, then up-

load the dll or assembly into a database and execute the ported code as simple T-SQL commands.

This includes, amongst others, user defined functions (UDFs), table valued functions (UDTVFs),

stored procedures (UDSPs) and aggregate functions (UDAFs), which can handle calculations of

higher complexity and faster than what can be done with a T-SQL routine. The SQL scripts for

uploading the code into a database are given in two kinds, depending on the version of MS-SQL

Server (2005 or 2008). All ported code and examples can be found in Appendixes A.1, A.2, A.3,

B.1 and B.2.

3.1. Cosmological Functions

The class containing the cosmological functions can be first instantiated with customizable

cosmological and auxiliary numerical parameters, allowing the execution of functions either with
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high precision or high speed. The SQL-CLR functions F (z) that comprehend all distances, times

and volume as a function of redshift (Eqs. (18), (19), (23)-(28), (31)-(36) ) are implemented in

two versions, either with fixed (from Eq. 17) or free cosmological parameters (names starting with

"fCosmf" and "fCosmo" respectively). The user can modify the code as necessary or adding new

features, such as a time evolving state equation for dark matter. Figure 1 shows the normalized

functions F (z) up to redshift z = 2.5, obtained from executing the fCosmfQuantities UDTVF.

This function returns the cosmological functions evaluated at a grid of redshifts. At redshift zi, part

of the integrals I(0, zi) = I(0, zi−1)+ I(zi−1, zi) in Eqs. (21) and (22) have already been calculated

in the previous redshift intervals. As a result, the quantities at each redshift can be streamed (using

C#’s ”yield return”) with no extra overhead and grid memory allocation.

In order to calculate the aforementioned integrals, numerical integration is implemented through

the Romberg method, which evaluates (without extra overhead) a progressively finer grid for the

trapezium method within the interval of integration (Press et al. 1992). Extrapolation of the in-

tegral’s value is performed to the case of zero grid separation by means of Neville extrapolation

(Press et al. 1992). The use of an open interval trapezium method is necessary when integrating

in the interval z ∈ [0,∞[, as well as the change of variable z → z−1. The fractional precision of the

integrals is by default set to ∆ ≤ 10−9.

For obtaining the inverses Z(F ) ≡ F−1(F (z)) of the cosmological quantities, i.e. the redshift

at particular values of distances, volume or times, we use a root finding method that includes

Newton-Raphson method (Press et al. 1992), Neville interpolation and simple bracketing. The first

iteration starts by using the Newton-Raphson algorithm, with a seed defined as the middle point

in the interval of length L1 that brackets a root (or redshift). If the new calculated redshift lies

inside the interval, a new smaller interval is selected and a new iteration is made. If the redshift lies

outside the bracket, we partition the original bracket in 4 intervals and use Neville interpolation

to compute a new root. A smaller root-containing bracket is defined as plus minus the error in the

redshift that results from Neville’s method. If the error interval is bigger than the initial bracket,

we find a new smaller bracket using the 5 redshifts values where the function was already evaluated

when performing Newton-Raphson algorithm and Neville interpolation. Then a new iteration is

started. Once this method has bracketed a root, it will never lose the solution, and stops when

either the root or the function at the root have reached a fractional precision of ∆ ≤ 10−9.

The convergence rate of the root finding algorithm is defined by the exponent n in the relation

Li = K × Ln
i+1, where K is a constant and i indexes the iterations (Press et al. 1992). In the best

case, the algorithm has quadratic convergence (n = 2) when Newton-Raphson dominates, and in

the worst case it’s linear (n = 1) when Neville’s method (K ≫ 1) or simple bracketing (K = 4)

dominate. Figure 2 shows the actual fractional precision ∆ = |Z(F ) − z|/z reached by the root

finding method. The probability distribution P (log∆) in Figure 3 shows a significant accumulation

at ∆ ∼ 10−16 − 10−14 and in ∆ = 0 as well, both far from the imposed ∆ = 10−9 cutoff, which

suggests that Newton-Raphson dominates at least in the last iteration.
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3.2. Binning Functions and Procedures

Simple data exploratory analysis tools include the function fMathBin, which returns the bin

centers where the data points fall in, given a one dimensional user defined grid. The function

fMathGrid returns a column table with a user defined grid, either in linear or logarithmic scale,

and can be used together with fMathBin and the group by clause in order to construct histograms

or any other aggregate related statistic (see Appendix B.1) . The bin and grid values are rounded to

a fractional precision of ∆ = 10−14. This eliminates numerical error created when constructing the

grid, allowing clean join clauses between tables on values generated by these functions. Fractional

precision rounding can be implemented with fMathRound, which rounds a value to a particular

number of significant digits. Midpoint rounding of type "ToEven" is applied to reduce bias.

The advanced UDSP spMathHistogramNDim returns a table with an N-dimensional histogram,

given data points distributed in N columns returned by a user defined query. In order to avoid

SQL-injection attacks, the query is filtered out using the fMathSafeSqlCommand UDF (see Section

3.4). The normalized-to-one probability distribution is also returned, which considers optional

multiplicative weighting of the data points. This UDSP can be of use when computing a color-

magnitude diagram under the VMAX method, as shown in Section 4.1 and Appendix B.1.

3.3. Statistical Aggregate Functions

Basic statistical aggregates implemented are the quantile function and its inverse, the cu-

mulative distribution function (CDF). In MS-SQL Server 2005, the total serialization in a CLR

UDAF is limited to 8000 Bytes, which cripples the capabilities of a CLR aggregate that stores and

sorts a large amount of values (Coles 2008). However, the existence of ranking functions such as

ROW NUMBER() allow the creation of UDFs that implement these statistical aggregates. In Cfun-

BASE, the function fMathCDF consists of a SQL script that uses ROW NUMBER() and returns the

(linearly interpolated) CDF, given a set of values returned as a column by a user defined query.

On the other hand, its inverse fMathQuantile gets the (linearly interpolated) quantile function.

SQL-injection attacks are prevented by using fMathSafeSqlCommand (see Section 3.4).

In MS-SQL Server 2008, the absence of a 8000 bytes serialization limit, together with multiple-

input-capable aggregates, allow the creation of simpler-syntax CLR UDAFs such as aMathQuantile

and aMathCDF. A drawback is the fact that serialization methods (i.e. read() and write()) have

to be implemented in the CLR code, instead of using the SQL native serialization. This makes this

aggregates slower than the UDFs in a factor 2-5 (tested for 106 records).



– 10 –

3.4. Security Related Functions

Submitted queries have the potential to affect the server negatively. In fact, SQL injection

attacks exploit the security breach in systems where the user’s query is not filtered out of harmful

commands. CasJobs sets particular user privileges and checks any query against a list of commands,

keywords or characters known to be potentially dangerous by using the spExecuteSafeSQL UDSP,

on which CfunBASE’s fMathSafeSqlCommand is based. The latter returns a safe command, that

can be passed to any function or procedure that requires executing it (note that UDSPs can not

be executed inside UDFs or UDTVFs). The maximum number of rows returned is tentatively set

to be 107.

4. Advanced Examples

The cosmological functions bring up the view of a 3-dimensional universe and its evolution

through time, in which galaxies can be studied according to their close environment, intrinsic

luminosity, colors, spectral quantities, etc. Here we show basic features of interest that can be

easily implemented, including luminosity functions and the friends-of friends algorithm for galaxy

groups identification. The testing of CfunBASE and these advanced examples was performed on

a GrayWulf cluster (Szalay et al. 2009a; Simmhan et al. 2009), designed for fulfilling the specific

needs of data intensive computing. It holds an SDSS DR7 database managed by MS-SQL Server

2008, running under Windows HPC server 2008.

4.1. Luminosity Function

The luminosity function (LF) Φ(M), i.e the galaxy number density per absolute magnitude

M , can be easily estimated using the VMax method (Schmidt 1968). Basically, it creates a weighted

histogram of the different values of M . The weights wi = 1/VMax,i are defined by the maximum

volume VMax,i inside which the ith galaxy can be observed, given the apparent magnitude and

redshift cuts of the survey and the fractional sky covering area FA of the footprint. The weighting

takes care of the fact that the density of the less luminous galaxies becomes very low at high

redshifts in flux limited surveys, phenomena known as Malmquist bias. A limitation is that it

assumes that the galaxies are evenly distributed in the sky, which is not the case. CasJobs offers

access the SDSS DR7 Main Galaxy Sample (MGS) (Strauss et al. 2002; Abazajian et al. 2009),

which is flux limited by an r-band petrosian apparent magnitude cut of mr . 17.77, and whose

selection function (or redshift distribution) peaks at z ≃ 0.1. We can construct a smaller sample

defined by the intervals z ∈ [z1 = 0.04, z2 = 0.12] and mr ∈ [m1 = 13.5,m2 = 17.77]. If the

ith galaxy of apparent magnitude m at a luminosity distance DL were to have limiting apparent

magnitudes m1,2, we obtain from Eq. 36 that it should be moved to a limiting luminosity distance
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DL;m1,2 given by

DL;m1,2 ≡ DL(zlim;m1,2)

= DL × 10(m1,2−k(zlim)−m+k)/5. (37)

Hence, the maximum volume is defined by the biggest interval of DL inside which a galaxy can

appear in the survey:

VMax,i = [V (min(DL(z2), DL;m2))

− V (max(DL(z1), DL;m1))]× FA. (38)

Note that Eq. 37 defines zlim in an implicit way. In order to solve for it iteratively, the redshift

dependent k-correction k(zlim) has to be known. This would need additional information related to

the galaxy’s spectral type, such as a decomposition into a linear combination of spectral templates.

As a rough approximation, we can use k ≃ k(zlim). The galaxies whose m is bright enough for

having VMax equal to the survey’s volume VS = [V (z2) − V (z1)] × FA are considered a volume

limited sample, and can be used for further studies without caring about the VMax weighting. The

LF Φ(M) and its Poisson error ∆Φ(M) are estimated at the center of absolute magnitude bins of

width ∆M , having the form

Φ(M) =
1

∆M

∑
i=galaxies

ci
VMax,i

, (39)

∆Φ(M) =
1

∆M

√√√√ ∑
i=galaxies

[
ci

VMax,i

]2
, (40)

where the sum is performed on the galaxies located in the corresponding bins. The factor ci takes

into account possible incompleteness in the sample. In this case, we choose ci = 1 for simplicity.

Appendix B.1 shows the T-SQL implementation of the LF based on the previous magnitude

and redshift cuts and other constraints, sampling ≃ 270000 MGS galaxies from DR7, where the area

of the spectroscopic survey amounts to 7932.125 deg2 (≃ 19% of the sky). The result can be seen in

Fig. 4, where both the LF and the color magnitude diagram (CMD) are shown. The LF obtained

by the VMax method uses the function fMathBin to aggregate the 1/VMax weights in the absolute

magnitude Mr bins, measured in petrosian magnitudes. The color Cur ≡ umodel − rmodel ≡ u − r

uses model magnitudes, which proves to be a better separator for the blue and red galaxy clumps

in the CMD (Baldry et al. 2004). The CMD is basically a weighted 2-dimensional histogram, where

the weights are also 1/VMax, and can be obtained by means of executing spMathHistogramNDim.

4.2. Friends-of-Friends Galaxy Cluster Identification Algorithm

The knowledge of the spatial distribution of galaxies is a relevant issue. Measurements of the 3-

D correlation function have shown that galaxies, as a collective group, distribute in space according



– 12 –

closely to a power law, where red and blue galaxies present different clustering (e.g. Budavari et al.

(2003)). At a more detailed level, various methods have been used for identifying members of galaxy

clusters and groups, allowing studies of galaxy properties depending on surrounding density and

environment. One widespread method is the friends-of-friends algorithm (FoF) (Huchra & Geller

1982), which is shown implemented in Appendix B.2. The algorithm starts with a galaxy labeled as

the first group member, and includes as its group members all the immediate neighbors closer than

predetermined linking comoving distances, both perpendicular (DLink,⊥) and parallel (DLink,∥) to

the line of sight. The process is repeated recursively on new neighbors of the neighbors, until no

more new neighboring galaxies are found. Then a new galaxy is picked and the whole process is

again repeated. Following Berlind et al. (2006), for a flat universe, z . 0.1 and a volume limited

sample, we define the maximum values for the comoving distances D⊥ and D∥ between 2 objects

separated at an angular separation θ:

D⊥ = (Dc(z1) +Dc(z2)) sin(θ/2)

≤ DLink,⊥ ≡ b⊥n̄
−1/3 (41)

D∥ = |Dc(z1)−Dc(z2)| ≤ DLink,∥ ≡ b∥n̄
−1/3 (42)

where n̄ is the average count density of galaxies. The values b⊥ and b∥ are chosen to find a balance

between including field galaxies as group members, and finding just the cluster’s core members.

Also, the galaxy peculiar velocities around clusters have to be taken into account, as they create

distortion in redshift space (fingers of God, pancakes of God, etc.). Since we use a volume limited

sample, the linking distances are not weighted by the selection function, but remain constant across

different redshift values. A simple solution is to take a cylindrical searching volume around a galaxy,

with parameters b⊥ = 0.14 and b∥ = 0.75 (Berlind et al. 2006). In our sample we have n̄ = 0.001283

Mpc−3, which leads to DLink,⊥ = 6.902 Mpc and DLink,∥ = 1.288 Mpc.

Finding the immediate neighbors of N galaxies is greatly eased by clustered indexing of the

spatial coordinates. Brute force spatial searches are expensive (O(N)), hence the importance of

identifying and storing the table rows on disk in a hierarchical schema according to the spatial

distribution of objects, thus decreasing searching times. The script in Appendix B.2 stores the

group labels of galaxies in the Groups table, which is filled up by running the FoF algorithm on the

table NeighborsLSS. The latter contains the neighbors of all galaxies based on the criteria shown

in Eqs. 42 and 41, being created out from spatial searches based on the ra,dec and redshift values

given in table DR7smallLSS. Note that although the neighbors of each galaxy can also be retrieved

”on the fly” in each step of the FoF algorithm from internal nested queries to DR7smallLSS, this

performs however slower than accessing this information right from an indexed Neighbors table.

This method might be nonetheless of practical use when storing all the neighbors into a table

becomes expensive, in the case of having too many objects (> 109) in DR7smallLSS, as is expected

in next generation all sky surveys.

A simple custom spatial indexing schema for table DR7smallLSS is to create a 3-dimensional

grid in space, whose cell side length is the longest distance between DLink,⊥ and DLink,∥. Using
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the function fMathBin, we can index each galaxy according to the 3-dimensional grid inside which

they fall. This leads us to 3 grid cell center values (Gx,Gy,Gz) for each galaxy, that together

with the SpecObjID can define a primary key or unique clustered index, i.e, an spatial index on

table rows stored sequentially on disk according to the following nested order of unique values:

(Gx,Gy,Gz,SpecObjID). This greatly reduces searching time (O(logN)) when using the BETWEEN

clause in searches around the x, y, z comoving coordinates of galaxies. A further improvement can

be the use of an Octree data structure, where a cube in space is divided recursively into 8 identical

cubes. A spatial index can be constructed by hashing together successive node IDs from the different

node levels, up to the level whose side length is the longest between DLink,⊥ and DLink,∥. R-trees

(Guttman 1984) could be implemented as well. It might be the case that the original table with

3-D coordinates of the galaxies becomes too big, or has already a primary key. In that case, we can

define a unique non clustered index in the previously binned spatial coordinates, or, if the table is

static (as usual in astronomical databases), we can even create a view of the table that includes

this index. In this case, however, the spatial searches might run a bit slower.

Another spatial searching possibility is to use native spherical indexing in MS-SQL server 2008,

which is implemented by means of the Geography type and associated to the unique clustered index

of the table. This type is defined based on a constant latitude/constant longitude tessellation of

the sphere. It takes as input the ra, dec coordinates and a spatial reference system identifier

(SRID) definition of the earth 5, allowing the calculation of physical distances between points on

the earth’s surface, but running however much slower than the previous grid based method. By

default, the database carries different SRID of the Earth’s shape and size, which implement only

ellipsoidal geometry (i.e. a non constant radius). This leads to inconsistencies when calculating

the separation angles between galaxies at different positions in the sky. The user can therefore use

this type only if spherical geometry based SRIDs are uploaded.

More sophisticated methods include different sphere tessellation schemas based on nested tree

data structures that define the cells, such as HTM (Szalay et al. 2005), HEALPix (Górski et al.

2005), IGLOO (Crittenden 2000). A clustered index composed by the nested cell IDs of the galaxies

is enough for spatial searches, since it’s trivial to compute the neighboring cell’s IDs based on the

cell ID where a galaxy falls in. Currently, CasJobs includes an HTM library with functions that

greatly facilitate spatial searches.

The spatial galaxy distribution shown in Figure 5 is obtained from running the FoF algorithm

on the volume limited sample specified in Section 4.1. Only galaxies in the northern galactic cap

of the DR7 footprint are shown. The groups of 10 or more galaxy members are highlighted by

drawing 7 Mpc semitransparent spheres around each galaxy. Finger of God like structures can thus

be easily identified.

5See definitions by the European Petroleum Survey Group standard
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5. Conclusion

As soon as new generation surveys release their data products, astronomers might be forced

to work inside databases, and even to write their own customized code and upload it into ”the

cloud”. In extragalactic astronomy, the trend of mapping the large scale structure with precision

multiband photometric redshifts will bring N ≥ 1010 redshift measurements, which require fast

specific database integrated software, implementing algorithms not slower than O(N logN) (Szalay

et al. 2002). CfunBASE might fill some gaps, by being customized for either precision or speed,

being expanded as new functions are required, and being ported into other DBMSs, such as MySQL,

Oracle, PostgreSQL or SciDB if necessary. In the future, a need for an expanded Structured Query

Language for scientific computing might arise, where data types and mathematical expressions of

higher complexity (such as linear algebra, calculus, statistical functions) are integrated as a natural

part of the language. If the market is big enough, this would be the replacement of IDL, R, Python

and other high level languages widely used in the scientific community, but that need the entire

dataset to be first stored in the available RAM/virtual memory or might run slowly when dealing

with big datasets.

The author is grateful to Mark Neyrinck for reviewing the paper, and to Alex Szalay, Tamas

Budavári, Ching-Wa Yip, Sebastien Heinis and Miguel Aragon-Calvo for useful advice. The Gray-

Wulf cluster was financially supported by the Gordon and Betty Moore Foundation, Microsoft

Research and the Pan-STARRS project.

A. List of CLR Functions

A.1. List of Cosmological Functions.

The cosmological functions shown here are the ones with fixed cosmological parameters drawn

from Eq. 17. The names of the ones with free parameters start with ”fCosmo” instead of ”fCosmf”,

and have the extra input parameters added at the end of the function declaration:

”, @OmegaM float=0.2739, @OmegaL float=0.726, @OmegaR float=1e-4, @w 0 float=-1, @h 0

float=0.705)”

Note that a float type in T-SQL corresponds to double precision in C#.

1. fCosmfDl( @z float)

Returns the luminosity distance [Mpc] at a given redshift.

2. fCosmfDc( @z float)

Returns the line of sight comoving distance [Mpc] at a given redshift.
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3. fCosmfDcInterval( @Zmin float, @Zmax float)

Returns the line of sight comoving distance [Mpc] comprehended in the redshift interval

[@Zmin,@Zmax].

4. fCosmfDa( @z float)

Returns the angular diameter distance [Mpc] at a given redshift.

5. fCosmfDm( @z float)

Returns the transverse comoving distance [Mpc] at a given redshift.

6. fCosmfComovingVolume( @z float)

Returns the comoving volume [Mpc3] between here and a given redshift.

7. fCosmfAbsMag( @m float, @z float)

Returns the absolute magnitude of a galaxy at a particular redshift.

8. fCosmfDistanceModulus( @z float)

Returns the distance modulus at a particular redshift.

9. fCosmfQuantities(@zMin float, @zMax float, @NumBin int)

Returns a table with the midpoints values of a grid of redshifts, together with their

corresponding values of the cosmological distances,comoving volume and time intervals.

10. fCosmfLookBackTime( @z float)

Returns the time interval [Gyr] between the present time and a particular redshift.

11. fCosmfAgeOfUniverse( @z float)

Returns the time interval [Gyr] between a particular redshift and the beginning of the

universe.

12. fCosmfTimeInterval( @zMin float, @zMax float)

Returns the time interval [Gyr] between redshifts zMin and zMax.

13. fCosmfHubbleDistance(@z float)

Returns the Hubble Distance [Mpc] at a particular redshift.

14. fCosmfHubbleTime(@z float)

Returns the Hubble Time [Gyr] at a particular redshift.

15. fCosmfComovDist2Objects( @Redshift1 float, @Redshift2 float, @AngularSeparation float)

Returns the comoving distance [Mpc] between 2 objects at different redshifts and loca-

tions in the sphere.
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16. fMathAngSepXYZ(@x1 float, @y1 float, @z1 float, @x2 float, @y2 float, @z2 float)

Returns the angular separation (in radians) between 2 points in Cartesian coordinates.

17. fMathAngSepRADEC(@Ra1 float, @Dec1 float, @Ra2 float, @Dec2 float)

Returns the angular separation (in radians) between 2 points in Equatorial coordinates.

18. fCosmfZfromDl( @LuminosityDistance float)

Returns the redshift at a given luminosity distance [Mpc].

19. fCosmfZfromDa( @AngularDiamDist float)

Returns a row with the first and second solution for the redshifts at a given angular

diameter distance [Mpc].

20. fCosmfZfromDm( @ComovDistTransverse float)

Returns the redshift for a given transverse comoving distance [Mpc].

21. fCosmfZfromDc( @ComovDistLineOfSight float)

Returns the redshift at a given line of sight comoving distance [Mpc].

22. fCosmfZfromAgeOfUniverse( @AgeOfUniverse float)

Returns the redshift at a given age of the universe [Gyr].

23. fCosmfZfromLookBackTime( @LookBackTime float)

Returns the redshift at a given look back time [Gyr].

24. fCosmfZfromComovVolume( @ComovVolume float)

Returns the redshift at a given comoving volume [Mpc3].

25. fCosmfComovVolumeFromDl( @LumDistance float)

Returns the comoving volume at a given luminosity distance [Mpc].

26. fCosmfZfromTh( @HubbleTime float)

Returns the redshift at a given Hubble time [Gyr].

27. fCosmfZfromDh( @HubbleDistance float)

Returns the redshift at a given Hubble distance [Mpc].
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A.2. List of Basic Data Exploratory Analysis and Statistical Tools.

1. fMathGrid(@x1 float, @x2 float, @NumBin int, @IsLinearScale bit, @IsMidPoints bit)

Returns a column containing the tick marks (either interval boundaries or midpoints)

that define a grid of @NumBin bins in the interval [@x1,@x2]. The scale is either linear or

logarithmic.

2. fMathBin(@x float, @x1 float, @x2 float , @NumBin int, @HasOpenUpperBound bit, @IsLinearScale

bit)

Returns the bin’s center where @x falls in, given a grid of @NumBin bins in the interval

[@x1,@x2]. The scale is either linear or logarithmic. Each bin can have open (or closed)

upper (or lower) bounds.

3. fMathRound(@x float, @SigPlace int)

Rounds a value up to the first @SigDigits significant digits.

4. spMathHistogramNDim(@Query nvarchar(512), @Dimension int, @String X1 nvarchar(128),

@String X2 nvarchar(128), @String NumCell nvarchar(128), @HasOpenUpperBound bit)

Returns an N-dimensional histogram (with optional weighting) of N-dimensional data

points returned by a user defined select statement.

5. aMathCDF(@AggregatedValues float, @Value float)

Aggregate function that returns the cumulative distribution function (CDF) at a @value,

given a column of values @AggregatedValues. If the value is not in the column of values, linear

interpolation is performed.

6. aMathQuantile(@AggregatedValues float, @CDFvalue float)

Aggregate function that returns the inverse of the cumulative distribution function

(CDF), also called Quantile Function; evaluated at a value of the CDF @CDFvalue in the

interval [0,1]. The aggregate works on a column of values @AggregatedValues, on which linear

interpolation is performed.

7. fMathCDF(@Query nvarchar(256), @Value float)

Returns the cumulative distribution function (CDF) at a value @Value, given a column

of values returned by a user defined query @Query. If the value is not in the column of values,

linear interpolation is performed.

8. fMathQuantile(@Query nvarchar(256), @CDFvalue float)

Returns the inverse of the cumulative distribution function (CDF), also called Quantile

Function; evaluated at a value @CDFvalue of the CDF in the interval [0,1]. The functions

works on a column of values returned by a user defined query @Query. Linear interpolation

between the column values is performed.
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A.3. List of Utility Functions

1. fMathSafeSqlCommand(@cmd VARCHAR(8000), @limit INT = 1000)

Parses and checks the command @cmd against SQL-injection. Returns a string with

a safe version of the command, enforced to return a maximum of @limit rows. Based on

spExecuteSQL from

http://casjobs.sdss.org/dr7/en/help/browser/browser.asp.

2. fMathReplace(@oldstr VARCHAR(8000), @pattern VARCHAR(1000),

@replacement VARCHAR(1000))

Case-insensitive string replacement. Identical to fReplace from

http://casjobs.sdss.org/dr7/en/help/browser/browser.asp.

3. fMathIsNumbers(@string varchar(8000), @start int, @stop int)

Checks that the substring is a valid number. Identical to fIsNumbers from

http://casjobs.sdss.org/dr7/en/help/browser/browser.asp.

B. Advanced Examples

Refer to http://www.skyserver.org/cfunbase/ for the T-SQL code that implements these

advanced examples.

B.1. Galaxy Luminosity Function and Color Magnitude Diagram (CMD)

This T-SQL script creates a small MGS and computes its luminosity function and

color magnitude diagram. Refer to Section 4.1 for details.

--Calculating the spectroscopic survey area:

SELECT SUM(area) FROM BestDR7..Region

WHERE type=’SECTOR’ -- AreaSurvey = 7932.12522550822 = 7932.125 SqDeg

--Setting up the redshift, luminosity distance and apparent magnitude cuts:

DECLARE @z_1 float, @z_2 float, @Dlum_1 float, @Dlum_2 float, @m1im_1 float, @mlim_2 float,

@FracVolume float, @AreASurvey float, @Vsurvey float

SET @z_1 = 0.04;

SET @z_2 = 0.12;

SET @Dlum_1=dbo.fCosmfDl(@z_1); print @Dlum_1

SET @Dlum_2=dbo.fCosmfDl(@z_2); print @Dlum_2

SET @m1im_1 = 13.50
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SET @mlim_2 = 17.77

-- The fraction of the entire sky volume occupied by the survey footprint:

SET @FracVolume = 0.1922801 -- @FracVolume = AreaSurvey / ( 4*PI()*power((180/PI()),2) )

-- Creating small table with galaxy sample:

CREATE TABLE DR7small(

SpecObjID bigint primary key not null, RA float not null, DEC float not null,

z float not null, m_r float not null, Vmax float not null, Color_u_r float not null

)

INSERT DR7small

SELECT

specobjid, ra, dec, z, petromag_r-extinction_r as m_r,

(dbo.fCosmfComovVolumeFromDl(

CASE

WHEN @Dlum_2 < dbo.fcosmfDl(z)*POWER(10.0,(@mlim_2-(petromag_r-extinction_r))/5.0)

THEN

@Dlum_2

ELSE

dbo.fcosmfDl(z)*POWER(10.0,(@mlim_2-(petromag_r-extinction_r))/5.0)

END)-

dbo.fCosmfComovVolumeFromDl(

CASE

WHEN @Dlum_1 > dbo.fcosmfDl(z)*POWER(10.0,(@m1im_1-(petromag_r-extinction_r))/5.0)

THEN

@Dlum_1

ELSE

dbo.fcosmfDl(z)*POWER(10.0,(@m1im_1-(petromag_r-extinction_r))/5.0)

END) )*@FracVolume AS Vmax,

(modelMag_u-extinction_u)-(modelMag_r-extinction_r) AS Color_u_r

FROM BestDR7.dbo.specphoto

WHERE

z between @z_1 and @z_2

and primtarget&(64|128|256)!=0 -- This chooses the MGS galaxies

and petromag_r-extinction_r between @m1im_1 and @mlim_2

--add your custom photometric and spectroscopic constraints here.

-- Getting the Luminosity function and its error.

-- Absolute magnitude range is [-25,-15], with number of bins = 100

-- (bin size DeltaM = 0.1 magnitudes)

SELECT dbo.fMathBin(v.AbsMag_r,-25, -15, 100 ,1, 1) AS AbsMag,

sum(1/v.Vmax)/0.1 AS Phi,

sqrt(sum( 1/(v.Vmax*v.Vmax) ) )/0.1 AS PhiError,

count(*) AS counts

FROM ( SELECT dbo.fCosmfAbsMag(m_r,z) AS AbsMag_r, Vmax FROM DR7small) AS v

GROUP BY dbo.fMathBin(v.AbsMag_r,-25, -15, 100 ,1, 1)
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ORDER BY dbo.fMathBin(v.AbsMag_r,-25, -15, 100 ,1, 1)

-- This gets the same luminosity function as a probability distribution, i.e.,

-- the area under it is unity.

EXECUTE spMathHistogramNDim ’SELECT dbo.fCosmfAbsMag(m_r,z), 1.0/(Vmax) FROM DR7small’

,1, ’-25’, ’-15’, ’100’ ,1

-- This gets the color magnitude diagram as a probability distribution, i.e.,

-- the area under it is unity. The color range is [0,5] with number of bins = 100.

EXECUTE spMathHistogramNDim ’SELECT dbo.fCosmfAbsMag(m_r,z),Color_u_r, 1.0/Vmax FROM DR7small’

,2, ’-25,0’, ’-15,5’, ’100,100’ ,1

B.2. Galaxy Groups Finding: The Friends-of-Friends Algorithm

This T-SQL script creates the NeighborsLSS table with the neighbors of the galaxies,

and executes the FoF algorithm, storing the galaxies labeled by group ID in table Groups.

Refer to Section 4.2 for details.

--This table stores spatial information:

CREATE TABLE DR7smallLSS(

SpecObjID bigint not null, RA float not null, DEC float not null, z float not null,

Gx float not null, Gy float not null, Gz float not null

--If native MS-SQL server 2008 geospatial indexing is also wanted, add the following line:

--,GeographyCol geography not null

)

-- This creates a unique clustered index or primary key with spatial information:

ALTER TABLE DR7smallLSS ADD PRIMARY KEY (Gx,Gy,Gz,SpecObjID);

INSERT DR7smallLSS

SELECT

specobjid, ra, dec , z,

-- The following gets the midpoints of the 3-dimensional grid cells. Note that

-- the cell side length is rounded to 7Mpc, having 80 cell divisions per dimension.

dbo.fMathBin(dbo.fCosmfDc(z)*SIN(radians(90.0-dec))*COS(radians(RA)),0,560,80,1,1),

dbo.fMathBin(dbo.fCosmfDc(z)*SIN(radians(90.0-dec))*SIN(radians(RA)),0,560,80,1,1),

dbo.fMathBin(dbo.fCosmfDc(z)*COS(radians(90.0-dec)),0,560,80,1,1)

--If native SQL 2008 server geospatial indexing is also wanted, add the following line:

--,GEOGRAPHY::Point(dec,ra,4326)

-- Note that 4326 is the SRID number of a custom Earth shape definition.

FROM DR7small

--Add the following line if a volume limited sample is wanted

--WHERE (dbo.fCosmfComovingVolume(0.12)-dbo.fCosmfComovingVolume(0.04))*0.1922801 <= Vmax
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ORDER BY

dbo.fMathBin(dbo.fCosmfDc(z)*SIN(radians(90.0-dec))*COS(radians(RA)),0,560,80,1,1),

dbo.fMathBin(dbo.fCosmfDc(z)*SIN(radians(90.0-dec))*SIN(radians(RA)),0,560,80,1,1),

dbo.fMathBin(dbo.fCosmfDc(z)*COS(radians(90.0-dec)),0,560,80,1,1), specObjID

-- This creates the Neighbors table:

CREATE TABLE NeighborsLSS(

SpecObjID bigint not null, NeighborSpecObjID bigint not null

)

CREATE unique clustered index SpecObjIDNeighborSpecObjID ON

NeighborsLSS(SpecObjID,NeighborSpecObjID)

INSERT NeighborsLSS

SELECT h1.Specobjid, h2.SpecObjID

FROM DR7smallLSS as h1, DR7smallLSS as h2

WHERE

-- The value 7.1 Mpc intead of 7 Mpc is chosen to avoid eventual problems with rounding:

h2.Gx between h1.Gx - 7.1 and h1.Gx + 7.1 and

h2.Gy between h1.Gy - 7.1 and h1.Gy + 7.1 and

h2.Gz between h1.Gz - 7.1 and h1.Gz + 7.1 and

-- If native SQL 2008 server geospatial indexing is also wanted,

-- erase the previous 3 lines and add the following line:

-- h1.GeographyRaDec.STDistance(h2.GeographyRaDec) <= (6360000.0)*0.00794

-- Note that 6360000 is a custom Earth radius in meters, and 0.00794 radians is the

-- angular size distance of 1.288 Mpc at redshift 0.04

and

-- The following defines the cylindrical volume around the galaxies:

(dbo.fCosmfDc(h1.z) + dbo.fCosmfDc(h2.z)) *

SIN(dbo.fMathAngSepRADEC(h1.ra,h1.dec,h2.ra,h2.dec)/2.0) <= 1.288 and -- Transverse

ABS(dbo.fCosmfDc(h1.z)-dbo.fCosmfDc(h2.z)) <= 6.902 and -- Line of sight

h1.Specobjid != h2.SpecObjID

GROUP BY h1.Specobjid,h2.SpecObjID

ORDER BY h1.Specobjid,h2.SpecObjID

GO

IF OBJECT_ID(’Groups’) IS NOT NULL DROP TABLE Groups

IF EXISTS (SELECT name FROM tempdb..sysobjects WHERE name like ’#temp%’)

DROP TABLE #temp

IF EXISTS (SELECT name FROM tempdb..sysobjects WHERE name like ’#Remaining%’)

DROP TABLE #Remaining

IF EXISTS (SELECT name FROM tempdb..sysobjects WHERE name like ’#PreviousNeighbors%’)

DROP TABLE #PreviousNeighbors

IF EXISTS (SELECT name FROM tempdb..sysobjects WHERE name like ’#Neighbors%’)
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DROP TABLE #Neighbors

IF EXISTS (SELECT name FROM tempdb..sysobjects WHERE name like ’#NewNeighbors%’)

DROP TABLE #NewNeighbors

CREATE TABLE Groups(

SpecObjID bigint not null, GroupID int not null

)

-- This finds and labels into groups the galaxies that have no neighbors:

SELECT SpecObjID,IDENTITY(int,1,1) AS GroupID INTO #temp FROM DR7smallLSS

WHERE SpecObjID NOT IN (SELECT SpecObjID FROM NeighborsLSS)

ORDER BY SpecObjID

INSERT Groups SELECT * FROM #temp

DROP TABLE #temp

GO

-- #Remaining has the galaxies that have not been yet labeled:

CREATE TABLE #Remaining(SpecObjID bigint primary key not null)

INSERT #Remaining SELECT specobjid FROM DR7smallLSS

WHERE SpecObjID NOT IN (SELECT SpecObjID FROM Groups) ORDER BY SpecObjID

-- #Neighbors stores the neighboring galaxies of the ones in table #PreviousNeighbors, and

-- #NewNeighbors stores the neighboring galaxies of the ones in table #Neighbors that

-- are not in table #PreviousNeighbors

CREATE TABLE #PreviousNeighbors(SpecObjID bigint not null)

CREATE TABLE #Neighbors(SpecObjID bigint not null)

CREATE TABLE #NewNeighbors(SpecObjID bigint not null)

--SET NOCOUNT ON

-- Starting the FoF algorithm:

DECLARE @SpecObjID bigint

DECLARE @i int, @counts int

-- @i stores the group label:

SELECT @i=COUNT(*)+1 FROM Groups

-- Getting the first galaxy:

SELECT TOP 1 @SpecObjID= specobjid FROM #Remaining

INSERT #PreviousNeighbors SELECT @SpecObjID

-- Finding the neighbors:

INSERT #Neighbors SELECT NeighborSpecObjID FROM NeighborsLSS WHERE SpecObjID = @SpecObjID

-- labeling the group:

INSERT Groups SELECT @SpecObjID,@i

--Updating #Remaining:
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DELETE FROM #Remaining WHERE SpecObjID=@SpecObjID

--Starting the loop that finds new neighbors:

WHILE 1=1

BEGIN

TRUNCATE TABLE #NewNeighbors

-- Getting the new neighbors of the neighbors:

INSERT #NewNeighbors

SELECT n1.NeighborSpecObjID

FROM NeighborsLSS as n1 JOIN #Neighbors n2 on n1.SpecObjID=n2.SpecObjID

WHERE n1.NeighborSpecObjID NOT IN

(SELECT SpecObjID FROM #PreviousNeighbors UNION SELECT SpecObjID FROM #Neighbors)

GROUP BY n1.NeighborSpecObjID

SELECT @counts = COUNT(*) FROM #NewNeighbors

IF (@counts>=1)-- If there are new neighbors, label current the group members and

-- set the new neighbors as the current neighbors:

BEGIN

INSERT Groups

SELECT SpecObjID, @i FROM #Neighbors

DELETE FROM #Remaining WHERE SpecObjID in (SELECT SpecObjID FROM #Neighbors)

TRUNCATE TABLE #PreviousNeighbors

INSERT #PreviousNeighbors SELECT SpecObjID FROM #Neighbors

TRUNCATE TABLE #Neighbors

INSERT #Neighbors SELECT SpecObjID FROM #NewNeighbors

END

ELSE -- If there are no new neighbors, store the group label and start with new galaxy:

BEGIN

INSERT Groups

SELECT SpecObjID, @i FROM #Neighbors

DELETE FROM #Remaining WHERE SpecObjID in (SELECT SpecObjID FROM #Neighbors)

SET @i=@i+1

SELECT TOP 1 @SpecObjID = specobjid FROM #Remaining

-- If all galaxies have been labeled, stop:

IF NOT EXISTS (select top 1 specobjid from #Remaining)

BREAK -- this exits the while loop

TRUNCATE TABLE #PreviousNeighbors

INSERT #PreviousNeighbors SELECT @SpecObjID

TRUNCATE TABLE #Neighbors

INSERT #Neighbors

SELECT NeighborSpecObjID FROM NeighborsLSS WHERE SpecObjID = @SpecObjID

INSERT Groups SELECT @SpecObjID,@i

DELETE FROM #Remaining WHERE SpecObjID=@SpecObjID

END

END
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Fig. 1.— Normalized cosmological functions for the best cosmological parameters shown in Eq. 17.

Note that this corresponds to a flat universe, in which DC(z) = DM (z). Note that, for z . 0.1, the

straight line zDH,0 is a good approximation for all distances, while zTH,0 fits well the look back

time in the same regime.
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Fig. 2.— Actual fractional precision ∆ = |Z(F )−z|/z of Z(F ) with respect to the original redshift

z that the value of F (z) is derived from. Note the cutoff at ∆ ≤ 10−9, imposed in the root finding

method. The horizontal dashed line denotes ∆ = 10−16, which is the precision for the double data

type. The values at ∆ = 0 are plotted off the logarithmic scale. The inverse function Com.Volume

1 refers to redshift as a functions of comoving volume, whereas Com.Volume 2 is redshift as a

function of DL composed with DL as a function of redshift.
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Fig. 4.— Luminosity Function (top) and color magnitude diagram (bottom) of the sample discussed

in Section 4.1. The bin sizes used are ∆Mr = 0.1 and ∆Cur = 0.05.
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Fig. 5.— Large Scale structure and galaxy groups (derived from the Friends-of-Friends algorithm)

in the DR7 northern galactic cap. The axes show comoving distance in Mpc. Details about the

volume limited galaxy sample are presented in Sec. 4.1. The galaxies are shown as points, while

semitransparent spheres (7 Mpc. radius) are drawn on top of galaxies belonging to groups of more

or equal than 10 members.


